Tìm m để phương trình
mx2+(2m-1)x+m-2=0 có 2 nghiệm phân biệt đều âm
Tìm m để phương trình \(x^2-mx+m+3=0\)có hai nghiệm dương phân biệt.
Có bao nhiêu số nguyên của m để phương trình \({x^4} - 10{x^3} - 2(m - 11){x^2} + 2(5m + 6)x + {m^2} + 2m = 0\) có bốn nghiệm phân biệt thuộc \(( - 2; + \infty )\) ?
Cho 2 phương trình ẩn x : \(x^2+\left(m-3\right)x-2m^2+3m=0\).Tìm m để phương trình đã cho có hai nghiệm phân biệt x\(_1\) ;x\(_2\) thỏa mãn \(\dfrac{x_1.x_2}{x_1+x_3}\)=\(-\dfrac{m^2}{2}\)
Cho phương trình : \(x^4-2\left(m+1\right)x^2+m^2+m+2=0\) tìm tất cả các giá trị của m để phương trình có bốn nghiệm phân biệt lớn hơn -1
Cho phương trình \(x^4-2x^2+m-1=0\) tìm m để phương trình có bốn nghiệm phân biệt cách đều nhau
Tìm tất cả các giá trị thực của m để phương trình \(4^x-2^{x+1}+m=0\) có 2 nghiệm thực phân biệt