\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=\dfrac{m^2+1}{8}\end{matrix}\right.\)
\(x_1^4-x_2^4=x_1^3-x_2^3\\ \Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]\\ \Leftrightarrow\left(x_1-x_2\right)\left(1-2x_1x_2\right)-\left(x_1-x_2\right)\left(1-x_1x_2\right)=0\\ \Leftrightarrow-\left(x_1-x_2\right)x_1x_2=0\Rightarrow x_1=x_2=\dfrac{1}{2}\Rightarrow\dfrac{m^2+1}{8}=\dfrac{1}{4}\Leftrightarrow m^2+1=2\Leftrightarrow m^2=1\Leftrightarrow m=\pm1\)