Lời giải:
Trước tiên để pt có thể có 2 nghiệm thì \(2m-1\neq 0\Leftrightarrow m\neq \frac{1}{2}\)
Với \(m\neq \frac{1}{2}\). PT có 2 nghiệm khi:
\(\Delta'=m^2-(2m-1)=(m-1)^2>0\Leftrightarrow m\neq 1\)
Áp dụng định lý Viete có: \(\left\{\begin{matrix} x_1+x_2=\frac{2m}{2m-1}\\ x_1x_2=\frac{1}{2m-1}\end{matrix}\right.\)
Ta có:
\(|x_1^2-x_2^2|=1\)
\(\Rightarrow |x_1^2-x_2^2|^2=1\)
\(\Leftrightarrow (x_1-x_2)^2(x_1+x_2)^2=1\)
\(\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)^2=1\)
\(\Leftrightarrow [\frac{4m^2}{(2m-1)^2}-\frac{4}{2m-1}].\frac{4m^2}{(2m-1)^2}=1\)
\(\Leftrightarrow 16(m-1)^2m^2=(2m-1)^4\)
\(\Leftrightarrow [4(m^2-m)-(2m-1)^2][4(m^2-m)+(2m-1)^2]=0\)
\(\Rightarrow 8m^2-8m+1=0\)
\(\Rightarrow m=\frac{2\pm \sqrt{2}}{4}\) (t/m)