Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tâm

Cho phương trình x2 +6x + 6m - m2 = 0( m là tham số). Tìm m để phương trình đã cho có 2 nghiệm thỏa mãn: x13 - x23 + 2x12 + 12x1 + 72 = 0

Giúp mình với ạ 

Akai Haruma
23 tháng 5 2021 lúc 16:42

Là sao em? Phải có yêu cầu cụ thể gì chứ?

Akai Haruma
23 tháng 5 2021 lúc 17:01

Lời giải:

Để pt có 2 nghiệm thì:

$\Delta'=9-(6m-m^2)\geq 0\Leftrightarrow m^2-6m+9\geq 0$

$\Leftrightarrow (m-3)^2\geq 0\Leftrightarrow m\in\mathbb{R}$.

Với $x_1,x_2$ là nghiệm của pt. Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-6\\ x_1x_2=6m-m^2\end{matrix}\right.\)

Khi đó:

\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)

\(\Leftrightarrow x_1^3-(-6-x_1)^3+2x_1^2+12x_1+72=0\)

\(\Leftrightarrow x_1^3+10x_1^2+60x_1+144=0\)

\(\Leftrightarrow (x_1+4)(x_1^2+6x_1+36)=0\)

\(\Leftrightarrow x_1=-4\) (dễ thấy \(x_1^2+6x_1+36>0\) )

\(\Leftrightarrow x_2=-6-x_1=-2\)

\(\Rightarrow 6m-m^2=x_1x_2=8\)

\(\Leftrightarrow m^2-6m+8=0\Leftrightarrow (m-4)(m-2)=0\)

\(\Leftrightarrow m=4; m=2\) (đều thỏa mãn)

 


Các câu hỏi tương tự
tannam
Xem chi tiết
Nguyen Duy
Xem chi tiết
hangg imm
Xem chi tiết
Chanhh
Xem chi tiết
Nguyen Duy
Xem chi tiết
Music Hana
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Hiep Nguyen
Xem chi tiết
ngocha_pham
Xem chi tiết