a) Để phương trình có nghiệm thì △\(=b^2-4ac\ge0\Leftrightarrow\left(2m+1\right)^2-4.1.\left(m^2+2\right)\ge0\Leftrightarrow4m^2+4m+1-4m^2-8\ge0\Leftrightarrow4m-7\ge0\Leftrightarrow m\ge\frac{7}{4}\)
Vậy \(m\ge\frac{7}{4}\) thì phương trình có nghiệm
b) Với \(m\ge\frac{7}{4}\) theo định lí Vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-\left(2m+1\right)}{1}=-2m-1\\x_1.x_2=\frac{c}{a}=\frac{m^2+2}{1}=m^2+2\end{matrix}\right.\)
Ta lại có \(x_1^2+x_2^2=x^2_1++2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-2m-1\right)^2-2\left(m^2+2\right)=4m^2+4m+1-2m^2-4=2m^2+4m-3\)
Vậy \(x_1+x_2=-2m-1;x_1.x_2=m^2+2;x^2_1+x_2^2=2m^2+4m-3\)với \(m\ge\frac{7}{4}\)