Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m^2-4m+3< 0\Rightarrow1< m< 3\)
Để pt có 2 nghiệm pb đều dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m^2-4m+3\right)>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=m^2-4m+3>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6m-2>0\\m+1>0\\m^2-4m+3>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< m< 1\\m>3\end{matrix}\right.\)
c/Để pt có nghiệm \(\Leftrightarrow6m-2\ge0\Rightarrow m\ge\frac{1}{3}\)
\(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m+1\right)^2-2\left(m^2-4m+3\right)\)
\(=2m^2+16m-2=2\left(m-\frac{1}{3}\right)\left(m+\frac{25}{3}\right)+\frac{32}{9}\ge\frac{32}{9}\)
\(M_{min}=\frac{32}{9}\) khi \(m=\frac{1}{3}\)