cho phương trình đường tròn (Cm) : x^2 + y^2 + (m+2)x - ( m+4)y +m+1=0
chứng minh khi m thay đổi đường tròn di chuyển qua hai điểm cố định.
cho (Cm)x2+y2-2mx-4(m-2)y+6=0 (1). tìm m để (1) là pt đường tròn
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
lập phương trình đường tròn qua A( 1,-2) và qua giao điểm của đường thẳng (d) : x-7y+10=0 với đường tròn x2+y2-2x+4y-20=0
Đường tròn (C): x2+y2-2x-6y=0. Tìm tọa độ M thuộc đường thẳng x=3 để từ M kẻ được tới (C) 2 tiếp tuyến vuông góc.
Cho đường tròn (C): (x+1)^2 +(y-7)^2 =85 A. Tìm tâm và bán kính của đường tròn B. Viết phương trình tiếp tuyến của đường tròn tại điểm M(1;-2)
Cho đường thẳng d : x- y + 1 = 0 và đường tròn C : x^2 + y^2 -4x +2y -4 = 0
a) Chứng minh điểm M (2;1) nằm trong đường tròn
b) Xét vị trí tương đối giữa d và
C
c) Viết phương trình đường thẳng d' vuông góc với và cắt đường tròn tại hai điểm phân biệt sao cho khoảng cách của chúng là lớn nhất.
cho đường tròn (c): x + y^ _2x+6y+5=0 viết phương trình tiếp tuyến của (c) biết tiếp tuyến đi qua điểm m(–2;–4)
Lập phương trình đường tròn : tâm I thuộc đường thẳng (d) : 3x+7y+1=0 và qua 2 điểm M(2,1) ; N(1,3)