Phương trình đã cho là đường tròn khi:
\(m^2+4\left(m-2\right)^2-6>0\)
\(\Leftrightarrow5m^2-16m+10>0\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{8+\sqrt{14}}{5}\\m< \dfrac{8-\sqrt{14}}{5}\end{matrix}\right.\)
Phương trình đã cho là đường tròn khi:
\(m^2+4\left(m-2\right)^2-6>0\)
\(\Leftrightarrow5m^2-16m+10>0\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{8+\sqrt{14}}{5}\\m< \dfrac{8-\sqrt{14}}{5}\end{matrix}\right.\)
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
Đường tròn (C): x2+y2-2x-6y=0. Tìm tọa độ M thuộc đường thẳng x=3 để từ M kẻ được tới (C) 2 tiếp tuyến vuông góc.
cho đường tròn (c) pt: \(\left(x+1\right)^2+y^2=9.\) viết PT đường thẳng đi qua A(2;3) cắt đường tròn (c) tại 2 điểm M,N so cho MN=6
1. Cho đường tròn (c) : \(x^2+y^2+6x-2y=0\) và đường thẳng d : \(x-3y-4=0\)
Tính tiếp tuyến của (C) song song với (d)
2. Tìm giá trị của m để đường thẳng \(\Delta:3x+4y+3=0\) tiếp xúc với (C) : \(\left(x-m\right)^2+y^2=9\)
3. Xác đinh m để \(\left(C_m\right):x^2+y^2-4x+2\left(m+1\right)y+3m+7=0\) là phương trình của một đường tròn
cho phương trình đường tròn (Cm) : x^2 + y^2 + (m+2)x - ( m+4)y +m+1=0
chứng minh khi m thay đổi đường tròn di chuyển qua hai điểm cố định.
cho (c): \(x^2+y^2-4x+2y-15=0\)
có i là tâm ,đường thẳng \(\Delta\) đi qua M (1;-3) cắt đường tròn (c) tại 2 điểm A,B sao cho \(\Delta IAB\) cps diện tích bằng 8. viết PT đường thẳng \(\Delta\)
Cho (C) : (x − 1)2 + (y + 2)2 = 25 và d : 3x − 4y + m − 3 = 0. (a) Tìm m sao cho d là một tiếp tuyến của (C). (b) Tìm m để trên d tồn tại điểm K sao cho 2 tiếp tuyến với đường tròn từ K đều tạo với d góc 60◦
lập phương trình đường tròn qua A( 1,-2) và qua giao điểm của đường thẳng (d) : x-7y+10=0 với đường tròn x2+y2-2x+4y-20=0
Cho đường tròn (C): \(\left(x-1\right)^2+\left(y-1\right)^2=25\) và M(0;-2). Hãy viết đường thẳng qua M và cắt đường tròn tại 2 điểm A, B sao cho diện tích tam giác IAB lớn nhất. (I là tâm đường tròn)