a/ \(x\ne1;x\ne3\)
b/ Cho \(P=1\Rightarrow\)\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\dfrac{3x\cdot\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\dfrac{3x}{2x-6}=1\)
\(\Leftrightarrow3x=2x-6\)
\(\Leftrightarrow3x-2x=-6\)
\(\Rightarrow x=-6\left(đk:x\ne-1,x\ne-3\right)\)
\(\Rightarrow x=6\)
Vậy \(x=6\)
a) \(ĐKXĐ:\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
b) Ta có: \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)
Ta có: \(P=1\\ < =>\dfrac{3x}{2\left(x-3\right)}=1\\ < =>3x=2\left(x-3\right)\\ < =>3x=2x-6\\ < =>3x-2x=-6\\ < =>x=-6\left(TMĐK\right)\)
Vậy: Để P=1 => x=-6
ĐKXĐ: \(x\ne1,x\ne3\)
\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x\left(x+1\right)}{\left(x+1\right)2\left(x+3\right)}=\dfrac{3x}{2\left(x+3\right)}\)Để phân thức = 1 \(\Rightarrow3x=2\left(x+3\right)\Rightarrow3x=2x+3\Rightarrow x=3\)
\(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}.\)
a) ĐKXĐ : \(x\ne-1;x\ne3\)
b ) Khi \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\dfrac{3x}{2x-6}=1\)
\(\Leftrightarrow3x=2x-6\)
\(\Leftrightarrow x=-6\)
Vạy \(x=-6\) thì phân thức trên bằng 1.
\(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a) ĐKXĐ \(x\ne-1;x\ne3\).
b) Để P = 1 :
\(\Leftrightarrow1=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
\(\Leftrightarrow3x^2+3x=\left(x+1\right)\left(2x-6\right)\)
\(\Leftrightarrow3x^2+3x=2x^2-4x-6\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(KTMĐK\right)\\x=-6\left(TMĐK\right)\end{matrix}\right.\)
Vậy x = -6 thì GTPT bằng 1.
a) Điều kiện xác định: \(x\ne1;x\ne3\)
b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow3x^2+3x=\left(x+1\right)\left(2x-6\right)\)
\(\Leftrightarrow3x^2+3x=2x^2-4x-6\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow x^2+x+6x+6=0\)
\(\Leftrightarrow x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại,vì:x\ne-1;-3\right)\\x=-6\left(TM\right)\end{matrix}\right.\)
Vậy \(P=1\) khi \(x=-6\)