a, Để biểu thức có giá trị bằng 0
\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b, Để biểu thức có giá trị bằng 0
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
c, Để biểu thức có giá trị bằng 0
\(\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
d, Để biểu thức có giá trị bằng 0
\(\Leftrightarrow98x^2-2=0\Leftrightarrow2\left(49x^2-1\right)=0\Leftrightarrow2\left(7x-1\right)\left(7x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
e, Để biểu thức có giá trị bằng 0
\(\Leftrightarrow3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\dfrac{2}{3}\)
\(f,\dfrac{x}{x^2-4}-\dfrac{3-x}{\left(x+2\right)^2}\)
\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{3-x}{\left(x+2\right)^2}\)
\(=\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)^2}-\dfrac{\left(3-x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)^2}\)
\(=\dfrac{x^2+2x-3x+6+x^2-2x}{\left(x-2\right)\left(x+2\right)^2}\)
\(=\dfrac{2x^2-3x+6}{\left(x-2\right)\left(x+2\right)^2}\)