\(A=\dfrac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\dfrac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\dfrac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\dfrac{x+y-z}{x-y+z}\)
Thay \(x=0;y=2009;z=2010\) ta được :
\(A=\dfrac{0+2009-2010}{0-2009+2010}=\dfrac{-1}{1}=-1\)
Vậy..