Phương trình hoành độ giao điểm là:
\(x^2-2x-3=0\)
a=1; b=-2; c=-3
Vì ac<0 nên phương trình có hai nghiệm phân biệt
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
=>x=3 hoặc x=-1
Phương trình hoành độ giao điểm là:
\(x^2-2x-3=0\)
a=1; b=-2; c=-3
Vì ac<0 nên phương trình có hai nghiệm phân biệt
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
=>x=3 hoặc x=-1
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\)và đường thẳng (d): \(y=3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để |x1|+2.|x2|=3
Trong mặt phẳng tọa độ Oxy, cho parabol: \(\left(P\right):y=x^2\) và đường thẳng (d): y=\(3x+m^2-1\). Chứng minh rằng với mọi m, (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x1,x2. Tìm m để \(\left|x_1\right|+2.\left|x_2\right|=3\)
Cho Parabol (P):y=2x^2 và đường thẳng (d):y=-x+6. Biết (d) cắt (P) tại hai điểm phân biệt A(x1,y1); B(x2,y2) với x1<x2. Tính 4x2+y1
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.
cho parabol (P):y=x\(^2\) và đường thẳng (d):y=2x-m+3 tìm m để (P) và (d) cắt nhau tại hai điểm nằm về hai phía của trục tung
Cho (P): y = 2x² ; (d): y = 4x + m Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt x1² + x2² = 3
Cho parabol (P): y=x2 và đường thẳng (d): y=2x-m2+9
1. Tìm tọa độ các giao điểm của Parabol (P) và đường thẳng (d) khi m=1
2. Tìm (m) để đường thẳng (d) cắt parabol (P) tai hai điểm nằm về hai phía của trục tung
(Làm hộ mình câu c nha)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=-x^2\) và đường thẳng (d) đi qua I(0;-1) và có hệ số góc k
a) CMR với mọi k thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A;B
b) Gọi hoành độ của A; B lần lượt là x1;x2. CM: \(\left|x_1-x_2\right|\ge2\)
c) Chứng minh: Tam giác OAB vuông