Cho (O;R) và hai dây AB, AC, B thuộc \(\stackrel\frown{AC}\), AB = \(R\sqrt{2}\) , sđ \(\stackrel\frown{AC}=120^0\).
a, Tính sđ \(\stackrel\frown{AB}\) , sđ \(\stackrel\frown{BC}\)
b, Tính độ dài \(\stackrel\frown{AB}\), độ dài \(\stackrel\frown{BC}\), độ dài \(\stackrel\frown{AC}\) theo R.
c, Tính AC, BC theo R.
Help me!!!
a. Xét \(\Delta OAB:\)\(AB^2=2R^2\)
\(OA^2+OB^2=R^2+R^2=2R^2\)
Vậy \(\Delta OAB\) vuông tại O.
\(\Rightarrow l_{\stackrel\frown{AB}}=\frac{\pi R.90}{180}=\frac{1}{2}\pi R\)
Có: \(l_{\stackrel\frown{BC}}=l_{\stackrel\frown{AC}}-l_{\stackrel\frown{AB}}\)\(=\frac{\pi R.120}{180}-\frac{1}{2}\pi R\)\(=\frac{1}{6}\pi R\)
c.Ace Legona, Nguyễn Việt Lâm tính giùm mk.
\(\widehat{AOC}=120^0\Rightarrow\widehat{AOH}=60^0\)
\(\Rightarrow AH=OA.sin\widehat{AOH}=R.sin60^0=\frac{R\sqrt{3}}{2}\)
\(\Rightarrow AC=2AH=R\sqrt{3}\)
\(\widehat{BOC}=\widehat{AOC}-\widehat{AOB}=30^0\)
Kẻ \(CP\perp OB\Rightarrow\left\{{}\begin{matrix}CP=OC.sin\widehat{POC}=R.sin30^0=\frac{R}{2}\\OP=OC.cos\widehat{POC}=R.cos30^0=\frac{R\sqrt{3}}{2}\end{matrix}\right.\)
\(BP=OB-OP=R-\frac{R\sqrt{3}}{2}=\frac{R\left(2-\sqrt{3}\right)}{2}\)
Áp dụng Pitago cho tam giác BCP:
\(BC=\sqrt{BP^2+CP^2}=R\sqrt{2-\sqrt{3}}\)
Ace Legona, Rồng Đom Đóm, Nguyen, Nguyễn Thành Trương, Nguyễn Thị Ngọc Thơ, Nguyễn Thị Thảo Vy, Lê Anh Duy, Y, Nguyễn Huy Thắng, Khôi Bùi , Bonking, Ribi Nkok Ngok, Nguyễn Việt Lâm, svtkvtm, Akai Haruma, Mysterious Person, @Phùng Khánh Linh, ...