Cho đường tròn (O;5cm) và dây cung AB =6 cm. Gọi E là trung điểm của AB, OE cắt (O) tại M. Độ dài dây AM là:
AB và CD là hai dây cung của đường tròn (O) cố định .Trong đó dây AB cố định, dây CD di động trên cung lớn AB sao cho BC song song với AD . Gọi M là giao điểm của AC và BD
a) tứ giác ABCDlà hình j ?
b) CM 4 điểm A,M,O,B thuộc 1 đường tròn .
c) CM OM⊥BC
Cho đường tròn tâm O, đường kính AB=2R, điểm C thuộc đường tròn O mà góc ABC bằng 30 độ, vẽ dây CD vuông góc với AB tại H, gọi M là điểm chính giữa của cung BC, I là giao điểm của BC và OM. a) chứng minh HCIO nội tiếp b) Gọi K là giao điểm của AM và BC. Chứng minh KC=2KB
Cho đường tròn (O;R) với dây CD cố định .Điểm M thuộc tia đối của tia DC.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (O;R) (A thuộc cung lớn CD) . Gọi I là trung điểm của CD , OM cắt AB tại H.Tia OI cắt AB tại K ,nối AB cắt CD tại E
a) C/m 4 điểm M,H,I,K cùng thuộc 1 đường tròn
b) C/m ME.MI=MA^2
c) Xác định vị trí của M để tam giác MAB đều
d) C/m KC là tiếp tuyến của đường tròn
Cho (O, R) đường kính AB, tiếp tuyến Ax, trên Ax lấy điểm M bất kì, kẻ dây AC vuông góc với OM a) Chứng minh MC là tiếp tuyến của (O) b) Gọi H là hình chiếu vuông góc của C lên AB. Tiếp tuyến tại B cắt tia AC tại D. Gọi I là trung điểm của CH, tia AI cắt BD tại N. Chứng minh: N là trung điểm của BD c) Chứng minh: CN là tiếp tuyến của (O)
Cho đường tròn(O) đường kính AE, dây AB(B khác E) Tiếp tuyến tại A và B của (O) cắt nhau tại M . H là giao điểm của OM và AB . F là giao điểm của ME và (O) a Chứng minh AHFM nội tiếp b gọi N là giao điểm của BF và OM. Chứng minh BE//OM và MN bình= NF.NB c Chứng kinh NH=NM
Cho (O;10cm) có AB là dây cung,khoảng cách từ O đến AB bằng 6cm.Tính độ dài dây AB
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA=R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.Chứng minh:
a) MO là đường trung trực của BC
b) MD là tiếp tuyến của đường tròn (O).
c) Kẻ đường kính CE của đường tròn (O). Tính mC, DE theo R.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.