Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N
a) Tính số đo góc MON
b) Chứng minh rằng MN = AM + BN
c) Chứng minh rằng \(AM.BN=R^2\) (R là bán kính của nửa đường tròn)
Cho nửa đường tròn (O;R) . Có AB là đường kính . Kẻ Ax,By là tiếp tuyến của (O;R) tại A và tại B . Biết rằng Ax,By cùng nằm trên 1 nửa mặt phẳng bờ AB với nửa đường tròn . Lấy M thuộc (O;R) sao cho M khác A và B . Tiếp tuyến tại M cắt Ax,By tại C;D 1) cm O;M;D;B nằm trên 1 đường tròn + cm O;M;C;A nằm trên 1 đường tròn 2) cm CD=AC+DB + cm C;O;D nằm trên đường tròn đường kín CD + cm khi M chạy trên (O;R) thì AC.DB=R^2 3) gọi H là giao điểm CO và AM gọi K là giao điểm DO và BM + cm HK // AB và HK có đội dài không đổi giúp e với ạ !!
Cho nửa(O;R) đường kính AB kẻ tiếp tuyến Ax;By với nửa O lấy M tùy ý trên nửa O tiếp tuyến tạo M cắt Ax;By tại C và D chứng minh COD=90 và CD=AC+BD b) AD cắt BC tại N chứng minh MN song song AC c) MN cắt AB tại H chứng minh MN là trung điểm MH
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a. Tính số đo góc MON
b. Chứng minh rằng MN = AM + BN
c. Chứng minh rằng AM.BN = R2 (R là bán kính của nửa đường tròn)
giúp với ạ
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a) Tìm vị trí của điểm C để chu vi AMNB nhỏ nhất
b) Xác định vị trí của điểm M và N để chu vi AMNB=14cm ( Biết AB=4cm)
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C, D
a) Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB
b) Tìm vị trí của điểm M để hình thang ABCD có chu vi nhỏ nhất
c) Tìm vị trí của C, D để hình thang ABDC có chu vi bằng 14 cm, biết AB = 4cm
(ko cần vẽ hình)Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
Cho (O) đường kính AB và tiếp tuyến Ax. Từ M thuộc tia Ã, kẻ tiếp tuyến thứ hai MC với (O) (C là tiếp điểm). Đường vuông góc với AB tại O cắt BC ở N.
a) Chứng minh: MO là đường trung trực của AC
b) Chứng minh MO // NB
c) Tứ giác OMNB là hình gì? Vì sao?
giúp mình với