Cho nửa đường tròn tâm ô đường kính AB và điểm M bất kì trên nửa đường tròn (M khác A, . Trên mặt phẳng bờ AB chứa nửa đường tròn kết tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K a) CMR: EFMK là tứ giác nội tiếp b) CMR: AI^2 = IM.IB c) CM BAF là tam giác cân d) CMR: tứ giác AKFH là hình thoi e) xác định vị trí M để tứ giác AKFI nội tiếp được một đường tròn
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi