Cho nửa đường tròn tâm O, đường kính AB, kẻ các tiếp tuyến Ax, By cùngphía với nửa đường tròn, đối với AB vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự C,D a, Chứng minh rằng b, tính số đo góc COD c, gọi I là giao điểm của OC và AE, gọi K là giao điểm của OD và BE. Tứ giác EIO là hình gì? vì sao d, chứng minh: OK×OD=OI×OC
b: Xét (O) có
CE,CA là các tiếp tuyến
nen CE=CA và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là các tiếp tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: OC là trung trực của AE
=>OC vuông góc với AE
DE=DB
OE=OB
Do đo; OD là trung trực của EB
=>OD vuông góc với EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
d: OK*OD=OB^2
OI*OC=OA^2
mà OB=OA
nên OK*OD=OI*OC