Mình nghĩ \(M\in(O)\) với \(M\neq K\).
a) Ta có tứ giác AKBC nội tiếp nên \(\widehat{AKB}+\widehat{ACB}=180^o\Rightarrow\widehat{AKB}=\widehat{ACE}\). (1)
Tứ giác AMBK nội tiếp nên \(\widehat{AMK}=\widehat{ABK}\) mà \(\widehat{AMK}=\widehat{AEC}(\text{so le trong, KM//EC})\) nên \(\widehat{ABK}=\widehat{AEC}\). (2)
Từ (1), (2) suy ra \(\Delta ABK\sim\Delta AEC(g.g)\).
b) Theo câu a: \(\Delta ABK\sim\Delta AEC\Rightarrow \frac{AK}{AB}=\frac{AC}{AE};\widehat{BAK}=\widehat{EAC}\)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AK}{AC};\widehat{BAE}=\widehat{KAC}\Rightarrow\Delta ABE\sim\Delta AKC\left(c.g.c\right)\).
c) Ta có KM // BC nên \(\Delta ABK\sim\Delta AEC\sim\Delta AMF\)
\(\Rightarrow\dfrac{AK}{AF}=\dfrac{AB}{AM}\).
Từ đây dễ suy ra \(\Delta AFK\sim\Delta AMB(c.g.c)\).