cho a,b là các số nguyên dương thỏa mãn \(p=a^2+b^2\) là số nguyên tố và p - 5 chia hết cho 8. giả sử các số nguyên x, y thỏa mãn \(ax^2-by^2\) chia hết cho p. Cmr: x,y cùng chia hết cho p
Tìm số tự nhiên n để tổng \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2\) chia hết cho 10.
Biết rằng đa thức P(x) chia hết cho x-a khi và chỉ khi P(a) =0
Hãy tìm các giá trị m;n sao cho đa thức:
\(P\left(x\right)=mx^2+\left(m+1\right)x^2-\left(4n+3\right)x+5n\) đồng thời chia hết cho x-1 và x+2
Chứng minh rằng nếu các số nguyên dương m,n thỏa mãn 2m+1 chia hết cho 2n +1 thì m chia hết cho n. Các anh chị giúp em với ạ, em cảm ơn nhiều
Cho n € N. CMR:
1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7
2) n(n^2-1)(3n+3) chia hết cho 12
3) n(n+1)(2n+1) chia hết cho 6
Chứng minh nếu a là 1 số nguyên không chia hết cho 5 và không chia hết cho 7 thì \(\left(a^4-1\right)\left(a^4+15a^2+1\right)\)chia hết cho 35
1c Cho A=a+b+c và B =\(\left(a+2018\right)^3+\left(b-2019\right)^3+\left(c+2020\right)^3\) trong đó a,b,c,d là các số nguyên . CMR A chia hết cho 3 khi và chỉ khi B chia hết cho 3
2c Giả sử p và p^2 +2 đều là các số nguyên tố . Chứng minh p^3+2 cũng là 1 số nguyên tố
3b Cho x,y>0 . TÌm GTNN của biểu thức M=\(\frac{x^2+12}{x+y}+y\)
CMR với mọi n\(\in\)N* thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho n(n+1)
cmr:\(a=1.2.3...2003.2004.\left(1+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2003}+\dfrac{1}{2004}\right)\)chia hết cho 2005