Để A \ B = A thid 5 - 4m < 2 - m
⇔-4m + m < 2 - 5
⇔ -3m < -3
⇔ m > 1
Vậy m > 1 thì A \ B = A
Để A \ B = A thid 5 - 4m < 2 - m
⇔-4m + m < 2 - 5
⇔ -3m < -3
⇔ m > 1
Vậy m > 1 thì A \ B = A
Cho các tập hợp A=[m;m+2] và B=[-1;2], trong đó m là một số thực tuỳ ý.
a) Tìm tất cả các giá trị của m để A⊂B.
b) Tìm tất cả các giá trị của m để A∩B=∅
Bài 1 : Cho A = ( -3 ; 6 \(]\) và B = ( 2m - 1; m +3 ). Tìm m sao cho A \(\cap\) B = \(\phi\)
Bài 2 : Cho A = ( -3 ; 6 \(]\) và B = ( 2m - 1; m +3 ). Tìm m sao cho A \(\cup\) B là một khoảng
Cho \(A=\left\{x\in R/\left\{{}\begin{matrix}3x-2m+5\ge0\\x+4m-3< 5\end{matrix}\right.\right\}\);
B = (-1;4]
a) Tìm m để \(A\ne\varnothing\)
b) Tìm m để \(B\subset A\)
1) Cho tập hợp CRA = \([-3;\sqrt{8})\), CRB = \((-5;2)\cup\left(\sqrt{3};\sqrt{11}\right)\). Tập CR(A\(\cap\)B) là?
2) Tìm m để hàm số y = \(\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\)xác định trên khoảng (-1; 3).
3) Cho A = [-4; 1], B = [-3; m]. Tìm m để \(A\cup B=A\).
cho a=[m;m+3] với m là tham số và b={0;2}. tìm m để b là con của a
Nêu định nghĩa đoạn \(\left[a;b\right]\), khoảng \(\left(a;b\right)\), nửa khoảng [a;b), (a,b], (\(-\infty;b\)], [a; \(+\infty\)).
Viết tập hợp R các số thực dưới dạng 1 khoảng ?
a) Tìm các số tự nhiên n sao cho 4n=5 chia hết cho 2n=1
b) Tìm tất cả các số B=62xy427, biết rằng số B chia hết cho 9 và 11.
Cho số thực a < 0 và hai tập hợp A = (-∞; 9a), B = (\(\dfrac{4}{a}\); +∞). Tìm a để A\(\cap\)B ≠ ∅
A. \(\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
B. \(\left[{}\begin{matrix}a\ge\dfrac{5}{2}\\a< -\dfrac{1}{3}\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}a< \dfrac{5}{2}\\a\ge-\dfrac{1}{3}\end{matrix}\right.\)
D. -\(\dfrac{1}{3}\)≤ a ≤ \(\dfrac{5}{2}\)
a, Tìm tất cả các số tự nhiên n thỏa mãn n^2 + 12n + 8 là số chính phương
b, Cho các số nguyên dương a,b thỏa mãn b lớn hơn hoặc bằng a và b^2 + 4a + 3 là số chính phương. Chứng minh rằng a^2-5b+30 là số chính phương.