Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
cho tam giác ABC vuông cân tại A , điểm D thuộc AB, qua B kẻ đường thẳng vuông góc với CD tại H , đường thẳng BH cắt CA tại E . cm tứ giác AHBC nội tiếp
Cho tam giác ABC nội tiếp (O). M thuộc cung nhỏ BC. Vẽ MD, ME, MF lần lượt vuông góc với AB, BC, AC tại D, E, F.
a) Cm: MEFC, MDBE nội tiếp.
b) Cm: D, E, F thẳng hàng và MB.MF = MD.MC
c) Gọi I là trung điểm AB và K là trung điểm EF. Cm: MK vuông KI
Cho tam giác ABC, góc A= 60 độ, đường phân giác BD của góc ABC, đường phân giác CE của góc ACB cắt nhau tại I ( D thuộc AC, E thuộc AB)
a, Chứng minh AEID là tứ giác nội tiếp
b, ID=IE
c, BA . BE= BD . BI
cho tam giác ABC có ba góc nhọn đường cao BE . gọi H và K lần lượt là chân các đường vuông góc kẻ từ E đến AB , AC
a, CMR tứ giác BHEK nội tiếp
b, CMR : BH. BA = BK . BC
c, gọi F là chân các đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF . CMR H ,I , K thẳng hàng
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM