cho hình vuông abcd. Gọi N là một điểm bất kỳ trên CD sao cho CN < ND. Vẽ đường tròn tâm O đường Kính BN. (o) cắt AC tại F; BF cắt AD tại M;BN cắt AC tại E. 1) Chứng minh tứ giác MEBA nội tiếp 2)Gọi giao điểm của ME và NF là Q, MN cắt (o) ở P. Chứng minh ba điểm B;Q;P thẳng hàng
Cho hình vuông \(ABCD\). Trên hai cạnh \(CB\) và \(CD\) lần lượt lấy hai điểm di động \(M\) và \(N\) sao cho \(CM=CN\). Từ \(C\) vẽ đường thẳng với \(BN\), cắt \(BN\) tại \(E\) và \(AD\) tại \(F\).
a) Chứng minh tứ giác \(FMCD\) là hình chữ nhật.
b) Chứng minh năm điểm \(A,B,M,E,F\) cùng nằm trên một đường tròn. Xác định tâm \(O\) của đường tròn đó.
c) Đường tròn \(\left(O\right)\) cắt \(AC\) tại một điểm thứ hai là \(I\). Chứng minh tam giác \(IBF\) vuông cân.
d) Tiếp tuyến tại \(B\) của đường tròn \(\left(O\right)\) cắt đường thẳng \(FI\) tại \(K\). Chứng minh ba điểm \(K,C,D\) thẳng hàng.
P/S: Em cần giải câu d)
Cho (O,R) đường kính AB, dây AC không đi qua tâm. Gọi H là trung điểm AC
a, Chứng minh OH//BC
b,Tiếp tuyến tại C (O) cắt OH tại M. Chứng minh MA là tiếp tuyến của đường tròn tâm O
c, Vẽ CK vuông góc với AB tại K. GỌi I là trung điểm của CK, đặt góc BAC = góc anfa. Chứng minh IK=R.sin anfa. cos anfa
d, Chứng minh 3 điểm M,I,B thẳng hàng
Ai giúp mình ý d vs ạ !
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
Cho đường tròn tâm O có đường kính CD lấy điểm K trên tia đối của tia CD (K khác C) Kẻ tiếp tuyến KA với đường tròn(A là tiếp điểm) Trên cung nhỏ Cx lấy điểm E khác C,A. Gọi F là giao điểm thứ hai của KE với đường tròn và H là hình chiếu vuông góc của A lên KO.
1) Chứng minh KH.KO=KA^2
2)Chứng minh EFOH nội tiếp
3)Chứng minh HA là phân giác góc EHF
4) Gọi I là giao điểm của DE và CF. Chứng minh I thộc một đường thẳng cố định khi E thay đổi thỏa mãn đề bài.
Các bạn làm giúp mk câu 4 với nha mấy câu trên mk lm được rồi thank
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho hình thang ABCD nội tiếp đường tròn ( O) có đường chéo AC, BD cắt nhau ở E, các cạnh bên AD, BC kéo dài cắt nhau ở F. Chứng minh rằng: a, Tứ giác ABCD là hình thang cân b, FA.FD=FB.FC c, Góc AED = góc AOD d, Tứ giác AOCF nội tiếp
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D. Kẻ DE vuông góc với BC, DF vuông góc với ÁC
a) CMR: Tứ giác DFEC nội tiếp được đường tròn
b) Gọi G là giao điểm của AB và EF. CMR : Góc FED = Góc ABD và tam giác BDG vuông
c) Gọi I là trung điểm của EF, H là trung điểm của AB. CMR: Tam giác ABD đồng dạng với tam giác FED và IH vuông góc với DI
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.