Bài1: Cho tam giác ABC, DE//BC, D thuộc AB, E thuộc AC. Trên tia đối tia CA lấy F sao cho CF= BD. DF cắt BC tại M. a) MD/MF=ACIAB b) Cho BC=8;BD=5;DE=3. Chứng minh tam giác ABC cân.
Bài2: Cho hình thang ABCD, AB//CD, M là trung điểm của CD, AM cắt BD tại I, BM cắt AC tại K a) IK//AB b) IK cắt AD và BC tại E,F. Chứng minh El=KF c) AC cắt BD tại O. Qua O vẽ đường thắng // AB cắt AD, BC tại M,N. Chứng minhh MO=NO và 2/MN= 1/AB+1/CD
Bài3 (HSG) Cho tam giác ABC đường thẳng qua A cắt BC, CA, AB tại M,N,P. chứng minh MB/MC. NC/NA. PA/PB=1
Cho hình thang ABCD (AB//CD). Gọi M là trung điểm của CD. AM cắt BD tại I, BM cắt AC tại K.
a) Chứng minh \(\frac{IM}{IA}=\frac{KM}{KB}\) rồi suy ra IK//AB//CD
b) Đường thẳng IK lần lượt cắt AD và BC tại E và F. Chứng minh I là trung điểm của EK và K là trunng điểm của IF
Cho tam giác ABC cân tại A. Đường vuông góc với BC tại B cắt đường vuông góc với AC tại C ở D. Vẽ BE vuông góc với CD tại E, gọi M là giao điểm của AD và BE.. Vẽ EN vuông góc BD tại N
a) Chứng minh DE/DM=DC/DA
b) Chứng minh MN//AB
c) Chứng minh ME=MB
Cho DABC vuông tại A, đường phân giác của góc A cắt BC tại D biết AB = 6 cm , AC = 8 cm . a) Tính BC, BD, DC b) Từ trung điểm M của BC kẻ 1 đường thẳng song song với AD cắt cạnh AC tại F và cắt tia đối của tia AB tại E .Chứng minh: . c) Chứng minh: AE = AF
Cho Tam giác KIM vuông tại K, đường phân giác của góc K cắt IM tại B. a. Tính IM, BI, BM biết KI = 15cm , KM = 20cm . b. Từ trung điểm A của IM kẻ đường thẳng song song với KB cắt cạnh KM tại C và tia IK tại H. Chứng minh: (MA)/(MB) = (AC)/(KB) c. Chứng minh: Tam giác KHC cân và H = MC d. Kẻ các đường phân giác ID và MN của tam giác KIM . Chứng minh : BI/BM * DM/DK * NK/NI =1
Cho góc xOy, trên tia Ox lấy hai điểm C và A, trên tia Oy lấy hai điểm D và B sao cho AD cắt BC tại E. Các đường thẳng AB và CD cắt nhau tại K; tia OE cắt AB tại I. Chứng minh rằng: \(\frac{IA}{IB}=\frac{KA}{KB}\)
Cho hình thang ABCD (đáyAB, CD; AB<CD) .Lấy điểm Mtrêncạnh AD và điểm N trên cạnh BC sao cho\(\frac{DA}{DA}=\frac{BN}{BC}\) .Lấy điểm I trên cạnh CD sao cho MI / / AC. MN cắt BD và AC tại E vàF.AC cắt BD tại O, IM cắt DO tại K, IN cắt CO tại H.Chứng minh: a)I N/ / BD b)ME=NF
Cho hình thang ABCD(AB//CD). M trung điểm CD, I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) Chứng minh IK//AB
b) IK cắt AD và BC lần lượt tại E và F. Chứng minh EI=IK=KF
Cho hình thang ABCD (AB // CD), M là trung điểm của CD. Gọi H là giao điểm của AM và BD, K là giao điểm của BM và AC.
a) C/m AH/HM = 2AB/CD
b) Chứng minh IK // AB.
c) Đặt AB = a, CD= b. Tính HK theo a và b