a) Vì \(AB\) // \(CD\left(gt\right)\)
=> \(AB\) // \(DM.\)
=> \(\frac{AI}{IM}=\frac{BI}{ID}=\frac{AB}{DM}\) (hệ quả của định lí Ta - lét) (1).
+ Vì \(AB\) // \(CD\left(gt\right)\)
=> \(AB\) // \(MC.\)
=> \(\frac{AK}{KC}=\frac{KB}{KM}=\frac{AB}{MC}\) (hệ quả của định lí Ta - lét) (2).
+ Vì \(M\) là trung điểm của \(CD\left(gt\right)\)
=> \(MD=MC.\)
=> \(\frac{AB}{DM}=\frac{AB}{MC}\) (3).
Từ (1), (2) và (3) => \(\frac{AI}{IM}=\frac{KB}{KM}.\)
=> \(IK\) // \(AB\) (định lí Ta - lét đảo).
b) Vì \(IK\) // \(AB\left(cmt\right)\)
=> \(EI\) // \(AB.\)
Mà \(AB\) // \(DM\left(gt\right)\)
=> \(EI\) // \(DM.\)
=> \(\frac{AE}{AD}=\frac{AI}{IM}=\frac{EI}{DM}\) (hệ quả của định lí Ta - lét) (4).
+ Vì \(AB\) // \(MC\left(cmt\right)\)
Mà \(KF\) // \(AB\left(cmt\right)\)
=> \(KF\) // \(MC.\)
=> \(\frac{BK}{BM}=\frac{BF}{BC}=\frac{KF}{MC}\) (hệ quả của định lí Ta - lét) (5).
+ Xét \(\Delta AMB\) có:
\(IK\) // \(AB\left(cmt\right)\)
=> \(\frac{AI}{AM}=\frac{BK}{BM}\) (định lí Ta - lét) (6).
Từ (4), (5) và (6) => \(\frac{EI}{DM}=\frac{KF}{MC}.\)
Mà \(DM=MC\left(cmt\right)\)
=> \(EI=KF\) (*).
+ Xét \(\Delta DBM\) có:
\(IK\) // \(DM\) (vì \(IK\) // \(AB\))
=> \(\frac{IK}{DM}=\frac{IB}{BD}=\frac{BK}{BM}\) (hệ quả của định lí Ta - lét) (7).
+ Xét \(\Delta ABD\) có:
\(EI\) // \(AB\left(cmt\right)\)
=> \(\frac{IB}{BD}=\frac{AE}{AD}\) (định lí Ta - lét) (8).
Từ (4), (7) và (8) => \(\frac{EI}{DM}=\frac{IK}{DM}.\)
=> \(EI=IK\) (**).
Từ (*) và (**) => \(EI=IK=KF\left(đpcm\right).\)
Hôm qua cô vừa cho bài tập này xong.
Chúc bạn học tốt!