Cho hình vuông ABCD . Lấy I thuộc BC.
Qua A kẻ đường thẳng vuông góc với AI cắt DC tại N
AI cắt đường thẳng DC tại M
a,CM : tam giác ANI cân
b,CM : AI\(\cdot\)AM=AB\(\cdot\)NM
c,CM : Khi điểm I thay đổi trên BC thì \(\dfrac{1}{AI^2}+\dfrac{1}{AM^2}\) không đổi
Cho hình vuông ABCD lấy điểm M ∈ BC vẽ AN ⊥ AM; N ∈ CD; tia AM cắt đường thẳng CD tại E.
a) ΔANM là tam giác gì?
b) Cmr: khi điểm M di động trên cạnh BC thì \(\dfrac{1}{AM^2}+\dfrac{1}{AE^2}\)không đổi
Cho hình vuông ABCD và điểm M thuộc cạnh BC. AM cắt DC tại N.
Chứng minh rằng: \(\dfrac{1}{AB^2}\)= \(\dfrac{1}{AM^2}\)+\(\dfrac{1}{AN^2}\)
Cho hình thoi ABCD có góc A = 120 độ . Vẽ tia Ax nằm trong hình thoi sao cho góc xAB = 15 độ . Tia Ax cắt BC tại I và cắt đường thẳng CD tại K . CMR \(\dfrac{4}{3AB^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)
Cho hình vuồn ABCD, M ∈ BC, AM cắt tia DC tại N. Chứng minh \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Qua đỉnh A của hình vuông ABCD cạnh bằng a, vẽ đường thẳng cắt BC ở E và cắt đường thẳng DC ở F. Chứng minh: \(\dfrac{1}{AE^{2^{ }}}+\dfrac{1}{ÀF^2}=\dfrac{1}{a^2}\)
help me
Cho tam giác ABC vuông tại C, đường cao CK.
a) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC.
Chứng minh CB. CH= CA. CI
b) Gọi M là chân đường vuông góc kẻ từ K xuống IH
Chứng minh \(\dfrac{1}{KM^2}=\dfrac{1}{CH^2}+\dfrac{1}{CI^2}\)
c) Chứng minh \(\dfrac{AI}{BH}=\dfrac{AC^3}{BC^3}\)
Cho tam giác ABC vuông tại A, đường cao AH. E, F lần lượt là hình chiếu của H trên AB, AC. Gọi M là trung điểm BC. Chứng minh \(S_{AEMF}=\dfrac{1}{2}S_{ABC}\)
Cho tam giác ABC (AB<AC) có đường cao AH và đường phân giác AD. Trên cạnh AC, lấy 1 điểm E sao cho AE=AB. Nối BE cắt AH tại I.
a) Chứng minh \(\dfrac{HB}{HC}=\dfrac{IB^2}{IE^2}\)
b) Cho DB= 15cm, DC=20cm. Tính chu vi và diện tích của tứ giác AEDI