a) Xét tam giác BAN và DAM ta có:
AB=AD(tc hv ABCD)
BN=DM(gt)
\(\widehat{ABN}=\widehat{ADM}\left(=90^o\right)\)
=> tam giác BAN=DAM(c-g-c)
=> AN=AM(2 cạnh tương ứng)
=> tam giác MAN cân tại A
b)
Ta có:
\(\widehat{DAM}=\widehat{BAN}\left(\Delta BAN=\Delta DAM\right)\)
\(\widehat{DAM}+\widehat{MAB}=90^o\) (tc hv ABCD)
=> \(\widehat{BAN}+\widehat{MAB}=90^o\)
=> \(\widehat{MAN}=90^o\)
Xét tam giác MAN vuông tịa A ta có:
AO là đg trung tuyến (O là trung điểm MN)
=> AO=\(\dfrac{1}{2}MN\)
Chứng minh tương tự CO=\(\dfrac{1}{2}MN\)
Mà AO=\(\dfrac{1}{2}MN\) (cmt)
Nên AO=CO
Ta có:
AB=BC(tc hv ABCD)
AO=OC(cmt)
AD=DC(tc hv ABCD)
=> B,O,D cùng thuộc đg trung trực của AC
=> B,O,D thẳng hàng
c) Xét tg ANFM ta có:
O là trung điểm AF(gt)
O là trung điểm MN(gt)
=> ANFM là hbh
MÀ MN vuông góc với AF(AO là đcao;F thuộc AO)
Nên ANFM là hthoi
MÀ AM=AN(tam giác MAN cân tại A)
Nên ANFM là hv