Cho hình bình hành ABCD, lấy M trên cạnh AB và N trên cạnh CD sao cho \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB};\overrightarrow{DN=\dfrac{1}{2}\overrightarrow{DC}}\). Gọi I và J là các điểm thỏa mãn \(\overrightarrow{BI}=m\overrightarrow{BC;}\overrightarrow{AJ}=n\overrightarrow{AI}\). Khi J là trọng tâm tam giác BMN thì tích m.n bằng bao nhiêu ?
cho hình thang vuông abcd đường cao ab = a, đáy lớn bc = 2a, đáy nhỏ ad = a
tính tích vô hướng \(\overrightarrow{AC}.\overrightarrow{BD}\) từ đó suy ra giá trị của cos (\(\overrightarrow{AC}.\overrightarrow{BD}\))
cho hình vuông ABCD cạnh bằng 6. Trên cạnh AB lấy M sao cho AM=2MB, trên cạnh CD lấy điểm N sao cho CN=3ND. Tính độ dài vecto \(\overrightarrow{u}=\overrightarrow{DM}+2\overrightarrow{AN}+\overrightarrow{BC}\)
Cho hình vuông ABCD cạnh a. Tính \(\left|\overrightarrow{AC}-\overrightarrow{BD}\right|\);\(\left|\overrightarrow{AB}-\overrightarrow{BC}-\overrightarrow{CD}-\overrightarrow{DA}\right|\)
cho hình vuông ABCD cạnh bằng 3a. Trên cạnh AB lấy M sao cho AM=2MB. Tính độ dài vecto \(\overrightarrow{u}=\overrightarrow{AM}+2\overrightarrow{AC}\)
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
cho hình thoi abcd cạnh a (a>0), góc ADC=120. TÍnh \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|+\overrightarrow{AD}.\overrightarrow{BD}\)
Cho hbh ABCD,M là trung điểm cạnh CD,N là trung điểm đoạn BM.
CMR:\(\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}\)
1/ Cho tam giác ABC và trung tuyến Cm tìm và dựng điểm E sao cho :
\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=\overrightarrow{0}\)
2/Cho 1 hình thang ABCD .Gọi M,N theo thứ tự là các trung điểm của các cạnh bê AD , BC . Biết \(\overrightarrow{AB}=\overrightarrow{u},\overrightarrow{BC}=\overrightarrow{v}.\)Hãy biểu diễn \(\overrightarrow{NM},\overrightarrow{AM},\overrightarrow{CN}\)theo \(\overrightarrow{u}\)và \(\overrightarrow{v}\)