\(\left\{{}\begin{matrix}AO\cap\left(SBC\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SBC\right)\right)=2d\left(O;\left(SBC\right)\right)\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
Từ A kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{285}}{19}\)
\(\Rightarrow d\left(O;\left(SBC\right)\right)=\dfrac{1}{2}AH=\dfrac{a\sqrt{285}}{38}\)