\(\left(SAB\right);\left(SAC\right)\) cùng vuông góc (ABCD) \(\Rightarrow SA\perp\left(ABCD\right)\)
\(SA=\sqrt{SD^2-AD^2}=a\sqrt{3}\)
Gọi M là trung điểm CD \(\Rightarrow GS=\dfrac{2}{3}MS\) (t/c trọng tâm)
\(\Rightarrow d\left(G;\left(SBD\right)\right)=\dfrac{2}{3}d\left(M;\left(SBD\right)\right)\)
Gọi I là giao điểm AM và BD \(\Rightarrow\dfrac{IM}{IA}=\dfrac{DM}{AB}=\dfrac{1}{2}\)
\(\Rightarrow d\left(M;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\Rightarrow d\left(G;\left(SBD\right)\right)=\dfrac{1}{3}d\left(A;\left(SBD\right)\right)\)
Kẻ AH vuông góc SO (O là tâm đáy) \(\Rightarrow AH\perp\left(SBD\right)\Rightarrow AH=d\left(A;\left(SBD\right)\right)\)
\(AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\) ; \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AO^2}\Rightarrow AH=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{a\sqrt{21}}{7}\)
\(\Rightarrow d\left(G;\left(SBD\right)\right)=\dfrac{1}{3}AH=\dfrac{a\sqrt{21}}{21}\)