Cho hình bình hành ABCD.Gọi M, N là trung điểm cảu Bc và AD. O là giao điểm của AC và BD
a, Chứng tỏ: AMCN là hình bình hành
b, Chứng tỏ: M, N, O thẳng hàng
c, Kẻ DH ⊥ AM (H ϵ AM) . Chứng tỏ CD=CH
Giúp mình câu c với. Hai câu a, b mình làm được rồi
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2S_{\Delta APQ}\)
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Cho hbh ABCD. Gọi M,N theo thứ tự là trung điểm của các cạnh BC và AD , O là giao điểm của AC và BD.
1)Chứng minh tứ giác AMCN là hbh.
2)Chứng minh 3 điểm M,O,N thẳng hàng.
3)Gọi H là chân đường vuông góc kẻ từ D đến AM.Chứng minh CD=CH.
P/s:Vẽ hình và giải hộ mình nha .(Đặc biệt là ý cuối)
Bài 1: chu nửa đường tròn O đường kính AB và điểm C trên nửa đường tròn.Kẻ CH vuông góc với AB. Gọi M,N lần lượt là điểm đối xứng với H qua AC và BC.
a, Chứng minh: M,C,N nằm trên tiếp tuyến của đường tròn tâm O
b, Chứng minh CH^2=AM*BN
Bài 2: Cho nửa đường tròn O đường kính AB tiếp tuyến Bx qua C trên nửa đường tròn kẻ tiếp tuyến thứ 2 cắt Bc tại M, tia AC cắt tia Ax tại N
a, chứng minh: OM vuông góc với BC
b, chứng minh: M là trung điểm của BN
c, kẻ CH vuông góc với AB, AM cắt CH tại I , chứng minh I là trung điểm của CH
Bài 3: Cho nửa đường tròn đường kính AB tiếp tuyến Ax, By qua M trên nửa đường tròn kẻ tiếp tuyến thứ 3 cắt Ax ,By lần lượt tại C,D. AD cắt BC tại N, MN cắt AB tại I .
a, chứng minh: CD=AC+BD
b, chứng minh:MN //AC
c, chứng minh: N là trung điểm của MI
cho hình bình hành ABCD.Gọi O là giao điểm của 2 đường chéo.Gọi M,N thứ tự là trung điểm của OD và OB.Gọi E là giao điểm của AM và CD,F là giao của CN và AB.
a,CM tứ giác AMCN là hình bình hành
b,Tứ giác AECF là hình gì?CM
c,Chứng Minh E và F đối xứng với nhau qua O
d,Chứng minh EC=2DE
Cho hình thang ABCD, O là giao điểm của 2 đường chéo, đáy lớn CD. Đường thẳng qua A song song với BC cắt BD ở E và đường thẳng qua B song song với AD cắt đường thẳng AC tại F.
a) CHứng minh: EF song song với AB.
b) Chứng minh: AB^2=EF.CD
c) Gọi S1, S2, S3, S4 theo thứ tự là diện tích các tam giác CAB, OCD, OAD, OBC. Chứng minh: S1.S2=S3.S4