Cho hình bình hành ABCD. Trên BC và CD lần lượt lấy hai điểm M và N sao cho: \(\dfrac{CN}{ND}=2.\dfrac{BM}{MC}\). Gọi P, Q theo thứ tự là giao điểm của AM, AN với BD. CMR: \(S_{\Delta AMN}=2.S_{\Delta APQ}\)
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
hattori heiji
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Cho \(\Delta ABC\) , trên BC lấy điểm M sao cho \(\dfrac{MC}{MB}=\dfrac{1}{2}\) , trên AC lấy điểm N sao cho \(\dfrac{NC}{NA}=\dfrac{1}{2}\) . Gọi G là giao điểm của AM và BN. C/minh:
a, MN // AB
b, \(\dfrac{GM}{GA}=\dfrac{GN}{GB}=\dfrac{1}{3}\)
Giúp mk với ạ.
1: Cho số thực x đk: \(0\le x\le1\)
Tim min và max của:
\(A=\dfrac{x^2}{2-x^2}+\dfrac{1-x^2}{1+x^2}\)
2: Cho hình vuông ABCD có M là trung điểm của DC, trên cạnh BC là 2 điểm H và K sao cho BH = HK = KC, AM cắt BD tại N. CMR:
a, \(\Delta ANH\) vuông cân tại N.
b, AC đi qua trung điểm của NK.
Trên các cạnh AB, AC của \(\Delta ABC\) lấy các điểm M, N sao cho \(AM=\dfrac{1}{3}AB;AN=\dfrac{1}{3}AC,\) BN cắt CM tại O. Gọi H, K lần lượt là chân các đường vuông góc hạ từ A và C đến BN.
a, C/minh: CK = 2AH
b, C/minh: \(S_{BOC}=2S_{BOA}\)
c, Giả sử \(S_{ABC}=12cm^2\) . Tính diện tích của tứ giác AMON?
Cho ΔABC vuông ở A, đường trung tuyến CM. Trên tia đối của MC lấy điểm D sao cho MD=MC
a, C/m: AC=BD
b, C/m: AC+BC > 2CM
c, Lấy K∈AM sao cho AK= 2/3 AM. Gọi N là giao điểm CK và AD, I là giao điểm BN và CD. C/m: CD = 3ID