a: Xét tứ giác AEBC có
AE//BC
AE=BC
Do đó: AEBC là hình bình hành
b: Vì AEBC là hình bình hành
nên AB cắt EC tại trung điểm của mỗi đường
=>FE=FC
c: Xét ΔDEM có DC/DM=DA/DE
nên AC//EM
mà AC//EB
nên M,E,B thẳng hàng
a: Xét tứ giác AEBC có
AE//BC
AE=BC
Do đó: AEBC là hình bình hành
b: Vì AEBC là hình bình hành
nên AB cắt EC tại trung điểm của mỗi đường
=>FE=FC
c: Xét ΔDEM có DC/DM=DA/DE
nên AC//EM
mà AC//EB
nên M,E,B thẳng hàng
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM
Bài 2: Cho ∆ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Trên tia đối của tia CB lấy điểm E sao cho CE = CA. Kẻ BH ⊥ AD, CK ⊥ AE. Chứng minh rằng:
a) AH = HD b) HK // BC
Bài 3: Cho hình thang ABCD (AB // CD). Các đường phân giác của góc ngoài tại đỉnh A và D cắt nhau ở M. Các đường phân giác của góc ngoài tạo đỉnh B và C cắt nhau ở N.
a) Chứng minh: MN // CD
b) Tính chu vi ABCD biết MN = 4cm.
Cho tam giác ABC,các điểm M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC.Trên tia đối của tia NP lấy điểm D sao cho ND=NP
a)Chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Mình biết làm câu a,b rồi các bạn làm câu c được không ?
Cho hình bình hành ABCD. Gọi E; F và O lần lượt là trung điểm của AB; CD và BD. Gọi I và K là
điểm bất kì trên AD và BC.
a) Chứng minh AI song song CK. b) Chứng minh AE = FC.
c) Chứng minh A; O và C thẳng hàng.
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
cho tam giác ABC, các điểm M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, trên tia đối của tia NP lấy điểm D sao cho ND=NP.
a) chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng
cho tam giác ABC vuông tại A,trung tuyết AD .kẻ DM vuông góc với AB (M thuộc AB) kẻ DN vuông góc với AC (N thuộc AC )
a. tứ giác ANDM là hình gì ? vì sao ?
b. trên tia đối của tia ND lấy điểm E sao cho ND = NE .chứng minh AECD là hình thoi
c.l tam giác ABC có điều kiện gì để tam giác ANDM là hình vuông