Chương I: VÉC TƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
quangduy

Cho hình bình hành ABCD. Gọi I, F, K là các điểm xác định bởi:

\(\overrightarrow{AI}=\alpha\overrightarrow{AB};\overrightarrow{AF}=\beta\overrightarrow{AC};\overrightarrow{AK}=\gamma\overrightarrow{AD}\). Chứng minh điều kiện cần và đủ để I, F, K thẳng hàng là: \(\dfrac{1}{\beta}=\dfrac{1}{\alpha}+\dfrac{1}{\gamma}\). Biết rằng: \(\alpha.\beta.\gamma\ne0\)

Nguyễn Việt Lâm
23 tháng 11 2018 lúc 22:29

Thay vì \(\alpha;\beta;\gamma\) khó gõ kí tự, mình chuyển thành \(a,b,c\) cho dễ, bạn tự thay lại.

Do ABCD là hbh \(\Rightarrow\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

- Chứng minh chiều thuận: I, F, K thẳng hàng \(\Rightarrow\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)

Do I, F, K thẳng hàng \(\Rightarrow\) tồn tại một số \(k\ne0\) để \(\overrightarrow{KF}=k.\overrightarrow{KI}\)

\(\Rightarrow\left(\overrightarrow{KA}+\overrightarrow{AF}\right)=k.\left(\overrightarrow{KA}+\overrightarrow{AI}\right)\Rightarrow\left(-c.\overrightarrow{AD}+b.\overrightarrow{AC}\right)=k\left(-c.\overrightarrow{AD}+a.\overrightarrow{AB}\right)\)

\(\Rightarrow\overrightarrow{AD}\left(ck-c\right)=k.a.\overrightarrow{AB}-b.\overrightarrow{AC}=ka.\overrightarrow{AB}-b.\overrightarrow{AB}-b.\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{AD}\left(ck-c+b\right)=\overrightarrow{AB}\left(ka-b\right)\) (1)

Do \(\overrightarrow{AD};\overrightarrow{AB}\) không cùng phương \(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}ck-c+b=0\\ka-b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{c-b}{c}\\k=\dfrac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\dfrac{c-b}{c}=\dfrac{b}{a}\Rightarrow1=\dfrac{b}{a}+\dfrac{b}{c}\Rightarrow\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\) (đpcm)

- Chứng minh chiều nghịch: \(\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\Rightarrow\) I, F, K thẳng hàng

\(\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\Rightarrow b=\dfrac{ac}{a+c}\)

\(\overrightarrow{FI}=\overrightarrow{FA}+\overrightarrow{AI}=-b.\overrightarrow{AC}+a.\overrightarrow{AB}=-b\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+a.\overrightarrow{AB}\)

\(\Rightarrow\overrightarrow{FI}=-\dfrac{ac}{a+c}\overrightarrow{AB}-\dfrac{ac}{a+c}\overrightarrow{AD}+a.\overrightarrow{AB}=\dfrac{a^2}{a+c}\overrightarrow{AB}-\dfrac{ac}{a+c}\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{FI}=\dfrac{a}{a+c}\left(a.\overrightarrow{AB}-c.\overrightarrow{AD}\right)\) (1)

Lại có \(\overrightarrow{KI}=\overrightarrow{KA}+\overrightarrow{AI}=-c.\overrightarrow{AD}+a.\overrightarrow{AB}=a.\overrightarrow{AB}-c.\overrightarrow{AD}\) (2)

Từ (1), (2) \(\Rightarrow\overrightarrow{FI}=\dfrac{a}{a+c}\overrightarrow{KI}\) ; mà \(\dfrac{a}{a+c}\) là hằng số \(\ne0\)

\(\Rightarrow F,I,K\) thẳng hàng (đpcm)

Vậy F, I, K thẳng hàng khi và chỉ khi \(\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)


Các câu hỏi tương tự
trâm bảo
Xem chi tiết
Nhung Phạm
Xem chi tiết
Thiên Yết
Xem chi tiết
Sophie Nguyen
Xem chi tiết
Tuyết Phạm
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Chee My
Xem chi tiết
Hà Anh
Xem chi tiết
Hương Hari
Xem chi tiết