Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Thu Thảo

Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC. Gọi O là giao điểm của MN và AC. Chứng minh:

a) B, O, D thẳng hàng

b) E, O, F thẳng hàng

Vũ Thu Thảo
6 tháng 10 2018 lúc 16:55

Các bạn ơi, bài này mình giải đc rồi nên các bạn ko cần giải nữa đâu nhé!

Nguyễn Lê Phước Thịnh
7 tháng 10 2022 lúc 22:57

a: Xét tứ giác AMCN có

AM//CN

AN//CM

DO đó: AMCN là hình bình hành

=>O là trung điểm chung của AC và MN

Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>B,O,D thẳng hàng

b: Vì AECF là hình bình hành

nên AC cắt EF tại trung điểm của mỗi đường

=>E,O,F thẳng hàng


Các câu hỏi tương tự
hoàng thị anh
Xem chi tiết
Annie Scarlet
Xem chi tiết
Nguyễn Trương
Xem chi tiết
lưu tuấn anh
Xem chi tiết
Hải Anh Bùi
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
pro
Xem chi tiết
phamthiminhanh
Xem chi tiết
Thuy Tran
Xem chi tiết