Cho hình chữ nhật có AB = 2AD, gọi E và I lần lượt là trung điểm của AB và CD. Vẽ tia Dx vuông góc với DE, tia Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM = EK. Gọi G là giao điểm của DK và EM.
a, C/minh: DEKM là hình chữ nhật
b, Tính số đo góc DBK
c, Gọi H là chân đường vuông góc hạ từ K xuống BM. C/minh 4 điểm A; I; G; H cùng nằm trên 1 đường thẳng
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
cho hình chữ nhật ABCD ( AB<BC) . gọi M là trung điểm cạnh BC sao cho CM=CD . từ M kẻ đường thẳng song song với CD cắt AD tại N . trên tia đối của tia MN lấy điểm E sao cho ME=MB . chứng minh AD vuông góc DE
Cho △ ABC. Trên tia đối của tia AC lấy điểm D, trên nửa mặt phẳng bờ DC không chứa B vẽ tia Dx sao cho ∠CDx = ∠ABC. Gọi E là giao điểm của Dx và AB. Chứng minh rằng: BC.DE = AC.AE+AB.AD
Cho hình chữ nhật ABCD. Vẽ BH ⊥ AC tại H. Gọi M, O, K lần lượt là trung điểm của AH, BH và CD. Tia CO cắt MB tại E. Tia MO cắt EH và BC lần lượt tại F và N
a, Tứ giác MOCK là hình gì
b, Chứng minh MK ⊥ MB
c, Chứng minh NE . FH = FE . NH
p/s: help em câu c với ạ
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
cho ht ABCD ( AB//CD) có AB=8cm;CD=16cm
gọi M;Nlần lượt là trung điểm của AD vàBC
Trên tia đối của tia DA lấy điểm E sao cho DE=1/2 AD.Qua điểm E kể đường thẳng song song với CD
cắt BC tại F.Tính MN và EF
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho ΔABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng của A qua M. Trên tia đối của tia Ha lấy điểm E sao cho HE = HA.
a. CM: HM // ED và HM = \(\frac{1}{2}ED\)
b. CM: ABDC là hình chữ nhật
c. Gọi P, Q lần lượt là hình chiếu của E lên BD và CD, EP cắt AD tại K. CM: DE = DK
d. CM: ba điểm H, P, Q thẳng hàng