Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Niki Rika

Cho hệ phương trình \(\left\{{}\begin{matrix}x-y=4\\2x+3y=5m+3\end{matrix}\right.\). Tìm \(m\) để hệ phương trình có nghiệm \(\left(x;y\right)\) sao cho biểu thức \(A=\dfrac{2019}{x^2+y^2-4}\) đạt giá trị lớn nhất.

Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 14:04

=>2x-2y=8 và 2x+3y=5m+3

=>-5y=8-5m-3=-5m+5 và x-y=4

=>y=m-1 và x=4+m-1=m+3

x^2+y^2-4=(m+3)^2+(m-1)^2-4

=m^2+6m+9+m^2-2m+1-4

=2m^2+4m+6

=2(m^2+2m+3)

=2(m^2+2m+1+2)

=2[(m+1)^2+2]>=4

=>A<=2019/4

Dấu = xảy ra khi m=-1


Các câu hỏi tương tự
Ni Rika
Xem chi tiết
Hoàng Anh Ngô
Xem chi tiết
Hải Yến Lê
Xem chi tiết
taekook
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
taekook
Xem chi tiết
Thắng Nguyễn
Xem chi tiết