Với \(m=\sqrt{3}\) hệ phương trình trở thành
\(\left\{{}\begin{matrix}\sqrt{3}x+y=2\sqrt{3}\\x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}(\sqrt{3}+1)x=2\sqrt{3}+1\\x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2\sqrt{3}+1}{\sqrt{3+1}}\\x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2\sqrt{3}+1}{\sqrt{3+1}}\\\frac{2\sqrt{3}+1}{\sqrt{3+1}}-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2\sqrt{3}+1}{\sqrt{3+1}}\\y=\frac{2\sqrt{3}+1}{\sqrt{3+1}}-1\end{matrix}\right.\)