ĐKXĐ: ...
Trừ vế cho vế: \(\sqrt{x}-\sqrt{y}+\sqrt{2-y}-\sqrt{2-x}=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x}+\sqrt{y}}+\frac{x-y}{\sqrt{2-y}+\sqrt{2-x}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)
\(\Leftrightarrow x-y=0\Rightarrow x=y\)
Thay vào pt đầu: \(\sqrt{x}+\sqrt{2-x}=\sqrt{2}\)
\(\Leftrightarrow2+2\sqrt{x\left(2-x\right)}=2\)
\(\Leftrightarrow\sqrt{x\left(2-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)