Hàm bậc nhất trên bậc nhất luôn đơn điệu trên mỗi khoảng xác định
\(\Rightarrow\) GTLN của hàm trên \(\left[2;5\right]\) rơi vào 1 trong 2 đầu mút
Hay \(\max\limits_{\left[2;5\right]}y=max\left\{y\left(2\right);y\left(5\right)\right\}\)
\(y\left(2\right)=\frac{m+3}{-1}=-m-3\)
\(y\left(5\right)=\frac{m+6}{-4}\)
TH1: nếu \(y_{max}=y\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}-m-3>\frac{m+6}{-4}\\-m-3=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\m=-7\end{matrix}\right.\)
\(\Rightarrow m=-7\)
TH2: nếu \(y_{max}=y\left(5\right)\Leftrightarrow\left\{{}\begin{matrix}\frac{m+6}{-4}>-m-3\\\frac{m+6}{-4}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m=-22\left(l\right)\end{matrix}\right.\)
Vậy \(m=-7\)