Ôn tập chương 2: Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thư

cho hàm số (P): y=ax2

a) tìm hệ số a biết đồ thị (P) đi qua điểm A \(\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\)

b) viết pt đường thẳng (d), biết đồ thị (d) song song với đường thẳng y=-2x-1 và tiếp xúc với (P)

Nguyen Thi Trinh
13 tháng 5 2017 lúc 11:32

Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:

\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)

\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)

Khi đó hàm số (p) có dạng: \(y=-x^2\)

Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)

Vì (d) song song với đường thẳng \(y=-2x-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)

Xét phương trình hoành độ tiếp điểm của (p) và (d) :

\(-x^2=-2x+b\)

\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)

Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)

Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )

Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)

Trần Quang Đài
13 tháng 5 2017 lúc 11:34

Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:

\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)

Vậy hệ số a của (P) là -1

b,Giả sử pt đường thẳng (d) có dạng y=ax+b

Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:

\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Khi đó phương trình đường thẳng (d) trở thành y=-2x+b

Ta có phương trình hoành độ giao điểm của (d) và (P) là

\(-x^2+2x-b=0\) (*)

Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)

Vậy phương trình đường thẳng (d) là y=-2x+1


Các câu hỏi tương tự
WonMaengGun
Xem chi tiết
Danh Lê
Xem chi tiết
hùng
Xem chi tiết
illumina
Xem chi tiết
Nguyen Duc Tu
Xem chi tiết
Danh Lê
Xem chi tiết
illumina
Xem chi tiết
Tú72 Cẩm
Xem chi tiết
Chà Chanh
Xem chi tiết