Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:
\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)
\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)
Khi đó hàm số (p) có dạng: \(y=-x^2\)
Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)
Vì (d) song song với đường thẳng \(y=-2x-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)
Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)
Xét phương trình hoành độ tiếp điểm của (p) và (d) :
\(-x^2=-2x+b\)
\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)
Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)
Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )
Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)
Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:
\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)
Vậy hệ số a của (P) là -1
b,Giả sử pt đường thẳng (d) có dạng y=ax+b
Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:
\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)
Khi đó phương trình đường thẳng (d) trở thành y=-2x+b
Ta có phương trình hoành độ giao điểm của (d) và (P) là
\(-x^2+2x-b=0\) (*)
Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)
Vậy phương trình đường thẳng (d) là y=-2x+1