\(y'=\frac{2x-4}{2\sqrt{x^2-4x}}=0\Rightarrow x=2\)
\(y'=\frac{2x-4}{2\sqrt{x^2-4x}}=0\Rightarrow x=2\)
Cho hàm số \(f\left(x\right)=ax+b\). Biết \(f\left(1\right)=\sqrt{3}\) và \(f'\left(1\right)=\dfrac{1}{\sqrt{3}}\). Tính a-b>
Cho hàm số f(x) = x4 - 2x2 + m - 1 (với m là tham số thực). Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số g(x) = \(\left|f\left(x\right)\right|\) trên đoạn [0;2] bằng 2020.
Cho hàm số y = f(x) = \(\left\{{}\begin{matrix}\frac{\sqrt{5x+3}-\sqrt{2x-1}\left(x< 1\right)}{x-1}\\m\cdot sin\left(\frac{\pi x}{2}+2019\right)\left(x\ge1\right)\end{matrix}\right.\) Tìm m để hàm số liên tục tại x=1
giá trị của hàm số m bằng bao nhiêu thì hàm số
f(x) ={ x2+2x+2 ; x#1
{ mx-3 ; x=1 liên tục tại điểm x0=1
cho hàm số \(y=\left\{{}\begin{matrix}2x+a,x\le1\\x^2+2ax+a+b,x>1\end{matrix}\right.\). Biết hàm số có đạo hàm tại \(x=1\). Tính giá trị \(a-b\)?
Tìm hàm số có đạo hàm tại x=2
A. \(y=\left|x-2\right|\)
B. \(y=\left|x-2\right|^2\)
C. \(y=\left|4-x^2\right|\)
D. \(y=\left|x^2-3x+2\right|\)
trong các hàm số sau hàm số nào không có đạo hàm tại x=1. vì sao?
A. y=2x-2
B. y=\(\left(x-1\right)^2\)
C. y=1-x
D. y=\(\left|x-1\right|\)
\(\text{Chứng minh phương trình sau luôn có nghiệm: a c o s 2 x + b s i n x + c o s x = 0}\)
1. \(_{\lim\limits_{x\rightarrow1}}\dfrac{x-\sqrt{x+2}}{x-^3\sqrt{3x+2}}\)
2. Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB= a, AD= 2a, SA vuông góc với đáy và SA= a
a) CM: \(CD\perp\left(SAD\right)\)
b) Gọi \(\alpha\) là góc giữa SD và mặt phẳng \(\left(SAC\right)\). Tính \(\cos\alpha\)