Bài 1: Định nghĩa và ý nghĩa của đạo hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Thúy Giang

Cho hàm số \(f\left(x\right)=\left|x-1\right|+\left|x-2\right|\)

Tìm đạo hàm của \(f\left(x\right)\)

Nguyễn Bảo Trân
7 tháng 5 2016 lúc 21:31

Ta xét bảng sau đây :

x 1 2 x-1 2 x-2 f(x) 1-x 4-2x 5-3x x-1 4-2x 3-x x-1 2x-4 3x-5

Ta có ngay với \(x\ne1\) và \(x\ne2\)

\(f'\left(x\right)=\begin{cases}-3;x< 1\\-1;1< x< 2\\3;x>2\end{cases}\)

Bây giờ xét tại \(x=1\), ta có

\(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{3-\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^+}\frac{-\Delta x}{\Delta x}=-1\)

\(\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{5-3\left(1+\Delta x\right)-2}{\Delta x}=\lim\limits_{\Delta x\rightarrow0^-}\frac{-3\Delta x}{\Delta x}=-3\)

Như vậy \(\lim\limits_{\Delta x\rightarrow0^+}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\ne\lim\limits_{\Delta x\rightarrow0^-}\frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x}\)

Nghĩa là không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=1\)

Tương tự không tồn tại đạo hàm của \(f\left(x\right)\) tại \(x=2\)

 

Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Đặng Thị Hạnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Dương Ánh Ngọc
Xem chi tiết
Đặng Thị Phương Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phú Phạm Minh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết