Sửa đề: \(x\geq 0; y\geq 0\)
Tìm min:
Áp dụng BĐT Bunhiacopxky:
\((x\sqrt{x}+y\sqrt{y})(\sqrt{x}+\sqrt{y})\geq (x+y)^2\)
\((x+y)(1+1)\geq (\sqrt{x}+\sqrt{y})^2\)
\(\Rightarrow (x\sqrt{x}+y\sqrt{y})(\sqrt{x}+\sqrt{y})\geq \left[\frac{(\sqrt{x}+\sqrt{y})^2}{2}\right]^2\)
\(\Leftrightarrow x\sqrt{x}+y\sqrt{y}\geq \frac{1}{4}\) (do \(\sqrt{x}+\sqrt{y}=1\) )
Vậy \(E_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)
----------------
Tìm max:
Vì \(\sqrt{x}+\sqrt{y}=1; \sqrt{x},\sqrt{y}\geq 0\) nên \(0\leq \sqrt{x}, \sqrt{y}\leq 1\)
\(\Rightarrow \left\{\begin{matrix} x\sqrt{x}\leq \sqrt{x}\\ y\sqrt{y}\leq \sqrt{y}\end{matrix}\right.\)
\(\Rightarrow E=x\sqrt{x}+y\sqrt{y}\leq \sqrt{x}+\sqrt{y}=1\)
Vậy \(E_{\max}=1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.