Lời giải:
Ta có:
\(2a^2+a=3b^2+b\)
\(\Leftrightarrow 2(a^2-b^2)+(a-b)=b^2\)
\(\Leftrightarrow (a-b)(2a+2b+1)=b^2\)
Giả sử $a-b, 2a+2b+1$ không nguyên tố cùng nhau. Khi đó, giữa $a-b,2a+2b+1$ sẽ tồn tại ước nguyên tố chung.
Gọi p là ước nguyên tố chung của \(a-b, 2a+2b+1\)
\(\Rightarrow \left\{\begin{matrix} a-b\vdots p\\ 2a+2b+1\vdots p\end{matrix}\right.\)
Vì \((a-b)(2a+2b+1)=b^2\Rightarrow b^2\vdots p\Rightarrow b\vdots p\)
\(\left\{\begin{matrix} b\vdots p\\ a-b\vdots p\end{matrix}\right.\rightarrow a\vdots p\)
\(\left\{\begin{matrix} a\vdots p\\ b\vdots p\\ 2a+2b+1\vdots p\end{matrix}\right.\Rightarrow 1\vdots p\) (vô lý)
Vậy $a-b,2a+2b+1$ nguyên tố cùng nhau. Mà tích của 2 số đó là một số chính phương nên bản thân mỗi số cũng là số chính phương.
Do đó \(2a+2b+1\) là số chính phương.