Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Vân Giang

Cho hai số thực x,y thỏa mãn điều kiện x+y=1 và x.y khác 0.

Chứng minh rằng \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Giúp mình với!!!

Y
17 tháng 4 2019 lúc 23:06

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}+\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\) \(+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x^2+x+1\right)+y^2+y+1}{\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x^2-y^2\right)-\left(x-y\right)}{x^2y^2+x^2y+xy^2+x^2+y^2+xy+x+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{x^2y^2+xy\left(x+y\right)+xy+x^2+y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-\left(x-y\right)\left(x+y+1\right)}{x^2y^2+2xy+x^2+y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+\left(x+y\right)^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)


Các câu hỏi tương tự
Thanh Thanh
Xem chi tiết
Wanna One
Xem chi tiết
Thanh Thanh
Xem chi tiết
THI QUYNH HOA BUI
Xem chi tiết
Lyly Luta
Xem chi tiết
Nguyễn văn a
Xem chi tiết
Thu Hà
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết
Ong Seong Woo
Xem chi tiết