Cho hai số thực x,y thỏa mãn điều kiện x+y=1 và x.y khác 0.
Chứng minh rằng \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Giúp mình với!!!
thực hiện phép tính
a) (x3+8y3):(2y+x) b.\(\frac{a-1}{2\left(a-4\right)}+\frac{a}{a-4}\) c. (x3+3x2y+3xy2+y3):(2x+2y)
d. (x-5)2+(7-x)(x+2) e.\(\frac{3x}{x-2}-\frac{2x+1}{2-x}\) f. \(\left(\frac{x+2}{x+1}-\frac{2x}{x-1}\right)\cdot\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
g.\(\left(\frac{1}{x+1}-\frac{3}{x^{3^{ }}+1}+\frac{3}{x^2-x+1}\right)\cdot\left(\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}\right)\) h.\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x+6}{4-9x^2}\)
Nguyễn Nam giúp giùm
Thực hiện phép tính:
1,\(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
2,\(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)
3,\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)
4,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
5,\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
cho x,y,z khác nhau và khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
CM : \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}=0\)
Cho x,y,z là các số dương thỏa mãn
\(\frac{1}{yx}+\frac{1}{yz}+\frac{1}{xz}=1\)
tìm giá trị lớn nhất của biểu thức Q=\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Bài 1: Tìm điều kiện xác định của phân thức:
a, \(\frac{1}{x^2+y^2}\)
b, \(\frac{x^2y+2x}{x^2-2x+1}\)
c, \(\frac{x+y}{\left(x+3\right)^2+\left(y-2\right)^2}\)
d, \(\frac{5x+y}{x^2+6x+10}\)
Bài 2:Tìm các giá trị của biến số x để phân thức sau bằng không:
a, \(\frac{x^2-4}{x^2+3x-10}\)
b, \(\frac{x^3-16x}{x^3-3x^2-4x}\)
c, \(\frac{x^3+x^2-x-1}{x^3+2x-3}\)
Bài 1 : rút gọn các phân thức sau :
a)\(\frac{7x-14y}{x^2-4y^2}\) b)\(\frac{x^3+8}{x^4-25}:\frac{x^2-2x+4}{x^2+5}\) c)\(\frac{x^2+7x}{x^2-9}.\frac{x^2+6x+9}{x^2-49}\)
Bài 2: Thực hiện các phép phép tính sau :
a)\(\frac{3x+5}{4x^3y}-\frac{5-15x}{4x^3y}\) b) \(\frac{4x+7}{2x+2}-\frac{3x+6}{2x+2}\) c) \(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)
Bài 1:Cho A=\(\frac{3x^{2^{ }}+3}{x^3-x^2+x-1}\)
a, Tìm điều kiện xác định
b, Rút gọn A
c, Tìm x∈Z để A∈Z
Bài 2: Chứng minh rằng: \(\frac{x}{x-y}-\frac{x^3-xy^2}{x^2+y^2}.\left(\frac{x}{x^2-2xy+y^2}-\frac{y}{x^2-y^2}\right)=-1\)
Bài 3: Cho P=\(\frac{1-a^2}{1+b}.\frac{1-b^2}{a^2+a}.\left(1+\frac{a}{1-a}\right)\)
a, Rút gọn P
b, Tìm điều kiện xác định của P
a) Cho x, y thỏa mãn: xy ≥ 1. CMR:
\(\frac{1}{1+x^2}\) + \(\frac{1}{1+y^2}\) ≥ \(\frac{2}{1+xy}\)
b) Tìm x, y ∈ Z thỏa mãn: 2x2 + \(\frac{1}{x^2}\)+\(\frac{y^2}{4}\)= 4