Cho 2 số thực dương x,y thỏa mãn
x + y = 4xy
CMR : Tập giá trị của P = xy là \(\left[\dfrac{1}{4};\dfrac{1}{3}\right]\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)
2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:
\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)
4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.
Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)
5) Chứng minh rằng:
\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)
6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)
Tìm GTLN của b sao cho bđt sau đúng:
\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)
7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:
\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)
8) Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)
cho x,y là 2 số thực thỏa mãn \(2\left(x^2+y^2\right)+xy=1.\) tìm min và max của bth P=\(2\left(x^4+y^4+1\right)+\left(x+y\right)^2\)
cho hai số thực dương x,y thỏa mãn điều kiện x+y+1=3xy
Tìm GTLN của biểu thức sau P=\(\dfrac{1}{x\left(y+1\right)}+\dfrac{1}{y\left(x+1\right)}\)
Cho x;y;z;t thỏa mãn: \(xyzt=1\) Chứng minh rằng: \(\dfrac{1}{x^2\left(yz+zt+ty\right)}+\dfrac{1}{y^2\left(xz+zt+tx\right)}+\dfrac{1}{z^2\left(xy+xt+tz\right)}+\dfrac{1}{t^2\left(xy+yz+xz\right)}\ge\dfrac{4}{3}\)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
1) cho hai số thực dương x,y thỏa nãm x+y =1 tìm min của S= \(\dfrac{1}{x}+\dfrac{4}{y}\)
2) cho hai số thực x,y thỏa mãn \(x^2+y^2-3\left(x+y\right)=-4\) tập giá trị của biểu thức S= x+y bằng bao nhiêu
Cho ba số thực dương x,y,z. Tính GTNN \(P=\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}\)