a) Giả sử \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)
nên nếu \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
b) Ngược lại của câu a.
Để \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)thì a(b+d)<b(a+c) <=> ab+ad<ab+bc<=>ad<bc<=>\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
Để \(\dfrac{a+c}{b+d}\)<\(\dfrac{c}{d}\)thì (a+c).d<(b+d).c<=> ad+cd<bc+cd<=>ad<bc<=>\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)