\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd.\) Chứng minh \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)
Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd\). Chứng minh: \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)
Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd\). Chứng minh \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
b) \(\frac{a^2}{b^2}=\frac{a^2-ac}{b^2-bd}\)
Cho \(b^2=ac;c^2=bd;b,c,d\ne0;b+c\ne d;b^5+c^5\ne d^5\)
Chứng minh: \(\frac{a^5+b^5-c^5}{b^5+c^5-d^5}=\left\{\frac{a+b-c}{b+c-d}\right\}^5\)
Cho \(ac=b^2\); \(ad=c^2\). Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1 : Cho 4 số a , b ,c khác 0 thỏa mãn \(^2=ac;c^2=bd;b^3+c^3+d^3\ne0\)
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2 : Cho a , b , c , d > 0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
cho tỉ lệ thức : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
Bài 2: Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{5a+3b}{5a-3b}=\frac{5a+3b}{5a-3b}\)
b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)