Bài 1: Tìm x biết: \(\left|x-\frac{2}{3}\right|-\left|x-7\right|=\frac{5}{3}\)
Bìa 2: Cho \(\frac{a}{b}=\frac{c}{d}\) và b+d\(\ne0\) . Chứng minh rằng \(\frac{a^{2009}+c^{2009}}{b^{2009}+d^{2009}}=\frac{\left(a+c\right)^{2009}}{\left(b+d\right)^{2009}}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) . CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{ \left(a+b+c\right)^3}{\left(b+c+d\right)^3}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\frac{5a+3b}{5a-3b}\) \(=\frac{5c+3d}{5c-3d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh rằng: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Câu 1:\(\frac{a}{b+c+d},\frac{b}{c+d+a},\frac{c}{d+a+b}+\frac{d}{a+b+c}Tính\) giá trị của mỗi tỉ số đó biết rằng a,b,c,d khác 0
Câu 2:Chứng minh rằng
a) \(7^{206}+7^{205}+7^{204}\) chia hết cho 43
b) \(32^{17}+16^{21}-2^{82}\) chia hết cho 44
Câu 3:
A) \(3^x+3^{x+2}=810\)
B) \(5^{x+2}+5^{x+1}+5^x=19375\)
Câu 4 : So sánh A và B biết rằng:
A = \(1+3+3^2+...+3^{100}\)
B=\(\frac{1}{2}.3^{101}\)
Câu 5:Tìm x,y
\(\left(x-\frac{3}{5}\right)+\left(y+2,9\right)^{2006}< _-0\)
Bài 1 : Cho 4 số a , b ,c khác 0 thỏa mãn \(^2=ac;c^2=bd;b^3+c^3+d^3\ne0\)
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2 : Cho a , b , c , d > 0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
cho b2 =ac,c2=bd(b,c,d khác 0,b+c khác d, b3+c3 khác d
chứng minh rằng: \(\dfrac{a^3+b^3-c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
Cho \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\). Chứng minh \(\left(\frac{a+b+c}{b+c+d^{ }}\right)^3\) = \(\frac{a}{d}\)
Chứng minh rằng:
a) Nếu có \(\frac{a+2}{a-2}\) = \(\frac{b+3}{b-3}\) thì \(\frac{a}{2}\) = \(\frac{b}{3}\)
b) Nếu có ac = b2 thì a(b2 + c2) = c(a2 + b2)
c) Nếu có \(\frac{a-c}{c-b}\) = \(\frac{a}{b}\) thì \(\frac{1}{c}\) = \(\frac{1}{2}\)(\(\frac{1}{a}\) + \(\frac{1}{b}\))
d) Nếu có \(\frac{a}{b}\) = \(\frac{b}{c}\) thì \(\frac{a}{c}\) = \(\frac{a^2+c^2}{b^2+c^2}\)
e) Nếu có \(\frac{a}{b}\) = \(\frac{c}{d}\) thì \(\frac{2a^{1995}+5b^{1995}}{2c^{1995}+5d^{1995}}\) = \(\frac{\left(a+b\right)^{1995}}{\left(c+d\right)^{1995}}\)